## TEMPERATURE FIELD OF A TWO-LAYERED PLATE WITH TIME-VARYING HEAT-TRANSFER CONDITIONS

O. T. Il'chenko

UDC 536.244

The investigation results have shown that the solution to the heat conduction problem in a double-layer plate with time-variable boundary conditions may be obtained numerically if the solutions to the problem at constant boundary conditions are known. It is also shown that the method [8] is applicable for solving the problem on a nonstationary temperature field of the system of bodies at time-variable boundary conditions.

A solution of the problem of a two-layered plate with the layer of lower thermal conductivity facing the heating medium and the free side of the other layer assumed to be adiabatic is given in [1, 2]. In [3] the solution of [2] is extended to the case in which the heat input is on the side of greater thermal conductivity and the free side of the second layer is adiabatic. The roots of the characteristic equation are found, and the problem is solved completely. The solution and characteristic equation given in [4] are identical with those in [3] except that only the special case is treated in which the layer thicknesses are so small that the solution can be limited to the first few terms of the series.

The results in [4] stating that in the case of a thin layer of thermal insulation material the temperature distribution in the metal layer is a function of the time only enabled the authors of [5, 6] to solve the problem of the temperature distribution along the insulation thickness.

The solution of the problem of the temperature field in a two-layered plate with heat transfer at both boundaries is discussed in [7]. The solution and characteristic equation of [7] revert to those of [3] under the assumption of zero heat transfer at one of the boundaries ( $Bi_{II} = 0$ ).

In all of the papers cited thus far, however, special cases of the problem of the nonstationary temperature field in a two-layered plate have been investigated.

In its most general context the problem for a two-layered plate with layer thicknesses  $\delta_1$  and  $\delta_2$  may be stated as follows:

$$\frac{\partial t_1(x, \tau)}{\partial \tau} = a_1 \frac{\partial^2 t_1(x, \tau)}{\partial x^2}, \quad -\delta_1 \leqslant x \leqslant 0, \tag{1a}$$

$$\frac{\partial t_2(r, \tau)}{\partial \tau} = a_2 \frac{\partial^2 t_2(x, \tau)}{\partial x^2}, \quad 0 \leqslant x \leqslant \delta_2$$
(1b)

under the boundary conditions

$$-\frac{\partial t_1(x, \tau)}{\partial x}\Big|_{x=-\delta_1} = h_1(\tau) \left[ t_{c_1}(\tau) - t_1(x, \tau) \right]_{x=-\delta_1},$$
(2a)

$$-\frac{\partial t_2(x, \tau)}{\partial x}\Big|_{x=\delta_2} = h_2(\tau) \left[ t_2(x, \tau) - t_{c_2}(\tau) \right]_{x=\delta_2}, \qquad (2b)$$

$$\lambda_1 - \frac{\partial t_1(x, \tau)}{\partial x} \bigg|_{x=0} = \lambda_2 - \frac{\partial t_2(x, \tau)}{\partial x} \bigg|_{x=0}, \qquad (2c)$$

$$t_1(x, \tau)_{x=0} = t_2(x, \tau)_{x=0}, \tag{2d}$$

$$t_1(x, 0) = t_2(x, 0) = t_0$$
 (2e)

V. I. Lenin Polytechnic Institute, Khar'kov. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 9, No. 6, pp. 1094-1099, December, 1970. Original article submitted September 10, 1969.

© 1973 Consultants Bureau, a division of Plenum Publishing Corporation, 227 West 17th Street, New York, N. Y. 10011. All rights reserved. This article cannot be reproduced for any purpose whatsoever without permission of the publisher. A copy of this article is available from the publisher for \$15.00.



Fig. 1. Functions  $\overline{\Theta} = f(Bi)$  determined from the parameter Fo<sub>2</sub> for a point on the surface of the higher-thermal-conductivity layer,  $x/\delta_1$ = 1;  $\rho = 0.1$ : 1) Fo<sub>2</sub> = 0.0116; 2) 0.0348; 3) 0.058; 4) 0.087; 5) 0.116; 6) 0.174; 7) 0.232; 8) 0.29; 9) 0.406.

We now show that the stated problem can be solved by the method of [8], according to which the nonstationary temperature field of a two-layered plate for time-varying functions  $h_1(\tau)$ ,  $h_2(\tau)$ ,  $t_{C_1}(\tau)$ , and  $t_{C_2}(\tau)$  is easily obtained if the solution of the problem for constant boundary conditions, i.e., a solution of the type in [7], is known.

The determination of the roots of the characteristic equation in [7] is readily expedited with present-day computer techniques. Nevertheless, as it is only necessary to demonstrate the legitimacy of applying the method of [8] to the solution of the temperature field problem for a two-layered plate under timevarying boundary conditions, we merely use the solution of [3]. We therefore consider the temperature field problem for a two-layered plate subject to timevarying heat-transfer conditions at one boundary, considering the second boundary to be adiabatic.

The results of a calculation of the temperature variation at individual points of the two-layered plate by the method of [8] for various laws governing the variation of the boundary conditions are compared with electrosimulation (modeling) data for the same problems on a USM-1 analog computer equipped with a section for analog modeling of the time-varying values of the function  $h_1(\tau)$ .

We consider the problem of the nonstationary temperature field of two-layered plates composed of a highly thermal-conducting material and an insulation material with the following physical characteristics:  $\lambda_1 = 36.7 \text{ W/m} \cdot \text{deg}; \lambda_2 = 0.227 \text{ W/m} \cdot \text{deg}; c_1 = 0.46 \cdot 10^3 \text{ J/kg} \cdot \text{deg}; c_2 = 0.734 \cdot 10^3 \text{ J/kg} \cdot \text{deg}; \gamma_1 = 802 \text{ kg}$  $/\text{m}^3; \gamma_2 = 81.5 \text{ kg/m}^3.$ 

The plate thicknesses were chosen so that, in the notation of [3], the first two-layered plate would have parameters  $\rho = 0.1$  and  $\xi = 0.01$ , corresponding to  $\delta_1 = 0.181$  m and  $\delta_2 = 0.1$  m. The second two-layered plate had parameters  $\rho = 1.0$  and  $\xi = 0.001$ , corresponding to  $\delta_1 = 0.0181$  m and  $\delta_2 = 0.1$  m.

The materials and thicknesses of the layers were especially chosen to permit the values given in [3] for the roots of the characteristic equation to be used. However, since the roots of the characteristic equation were found for values of  $\zeta = 1/Bi$  over rather large intervals, it is convenient for the analytic points to construct  $\overline{\Theta} = f(Bi)$  from the parameter Fo<sub>2</sub> so as to be able subsequently to determine  $\overline{\Theta} = f(Fo_2)$  from the parameter Bi according to the known values of  $\overline{\Theta}$  for fixed values of Fo<sub>2</sub> (Fig. 3).

The boundary and initial conditions for the regimes in which the analytic values calculated by the method of [8] were compared with the electrosimulation data at individual points of the two types of two-layered plates are given in Table 1. The results of a comparison of the temperature variations obtained at certain points of the two-layered plates by the approximate numerical method and electrosimulation on the USM-1 are given in Table 2.

| $\begin{array}{c} \underbrace{\mathbf{u}}_{E_{0}} \\ \underbrace{\mathbf{Heat-transfer intensity}}_{\mathbf{u}} \\ \mathbf{law, Bi}_{1} = f(Fo_{2}) \\ \underbrace{\mathbf{u}}_{E_{0}} \\ \underbrace{\mathbf{u}}_{$ | nedium, $t_{C_1} = \varphi$ (Fo <sub>2</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                      | Coordii<br>of. anal<br>point x                                | Type of plate, <i>P</i>                              | Initial ditions                                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{aligned} t_c &= 120 - 60 \exp \left(-4 F o_2\right) \\ t_c &= 120 - 60 \exp \left(-4 F o_2\right) \\ t_c &= 1000 \left[1 - \exp \left(-0.5 F o_2\right)\right] + t_0 \\ t_c &= 1000 \left[1 - \exp \left(-0.5 F o_2\right)\right] + t_0 \\ t_c &= t_0 \left[3 F o_2 + \exp \left(3 F o_2\right)\right] \\ t_c &= t_0 \left[3 F o_2 + \exp \left(3 F o_2\right)\right] \\ t_c &= 473 \ ^\circ K \\ t_c &= 120 - 60 \exp \left(-4 F o_2\right) \end{aligned}$ | 1,0<br>0,667<br>1,0<br>0,667<br>0,667<br>1,0<br>0,667<br>0,33 | 0,1<br>0,1<br>0,1<br>0,1<br>0,1<br>0,1<br>0,1<br>1,0 | 289<br>289<br>298<br>298<br>323<br>323<br>273<br>289 |

TABLE 1. Summary of Boundary and Initial Conditions in the Analyzed Regimes

TABLE 2. Comparison of Temperature Variations at Points of a Two-Layered Plate According to the Approximate Numerical Meth-od and Analog Computer Modeling in the Regimes Indicated in Table 1

|   |        | e |              | 667  | ĺM <sup>i</sup> °C           | 124,6<br>145,4<br>165,7<br>164,0<br>173,0<br>176,9<br>177,0<br>177,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---|--------|---|--------------|------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |        |   |              | 0    | ʻa, °C                       | $\begin{smallmatrix} 124, 0\\ 145, 2\\ 162, 7\\ 172, 0\\ 174, 5\\ 176, 7\\ 176, 7\\ 176, 7\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 177, 0\\ 17$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|   |        |   |              | 33   | ,™<br>M                      | 36,8<br>36,8<br>58,5<br>66,7<br>79,8<br>88,3<br>96,2<br>107,0<br>114,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|   |        | æ |              | 0,3  | ta, °C                       | 37,4<br>37,4<br>57,1<br>57,1<br>57,1<br>57,1<br>57,2<br>96,9<br>96,9<br>107,2<br>113,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|   |        |   |              | 57   | ť <sub>M</sub> ' °C          | $\begin{array}{c} 62,2\\ 86,7\\ 110,0\\ 130,2\\ 162,0\\ 190,0\\ 199,0\\ 199,0\\ 199,0\\ 199,0\\ 199,0\\ 199,0\\ 199,0\\ 199,0\\ 199,0\\ 199,0\\ 199,0\\ 199,0\\ 190,0\\ 190,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,0\\ 100,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|   |        | 7 |              | 0,6  | ta, °C                       | 62,0<br>87,0<br>109,5<br>131,0<br>162,0<br>178,0<br>198,0<br>198,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|   |        |   |              | 0,   | fM °C                        | 50,3<br>51,4<br>55,5<br>55,5<br>55,5<br>55,5<br>55,5<br>55,5<br>55,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|   |        | 9 |              | 1    | fa, °C                       | 50,2<br>50,6<br>51,7<br>51,7<br>58,4<br>64,8<br>85,0<br>85,0<br>137,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|   |        |   |              | .667 | fM⁺ °C                       | $\begin{array}{c} 50,2\\ 52,2\\ 54,4\\ 57,6\\ 66,8\\ 66,8\\ 79,6\\ 94,2\\ 128,6\\ 189,0\\ 189,0\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|   | Regime | 5 | $x/\delta_1$ | 0    | ťa, °C                       | 50,6<br>54,4<br>57,8<br>57,8<br>66,8<br>79,2<br>79,2<br>92,7<br>185,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|   |        |   | of point     | 67   | ŕ <sub>M</sub> , °C          | 27,0<br>31,9<br>38,4<br>48,4<br>48,4<br>48,4<br>72,5<br>99,0<br>127,0<br>122,0<br>261,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|   |        | 4 | rdinates     | 0,6  | ťa, °C                       | $\begin{array}{c} 27,7\\ 27,7\\ 31,9\\ 47,7\\ 71,0\\ 96,0\\ 177,0\\ 177,0\\ 255,0\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|   |        |   | Coc          | 0    | ¢M, °C                       | 255,6<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,0<br>145,000,00000000000000000000000000000000                                                                                                                                                                                                                                                                                                                              |
| נ |        | ŝ |              | 1    | <sup>t</sup> a, °C           | 255,7<br>255,7<br>256,5<br>337,9<br>337,9<br>337,9<br>337,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,7<br>557,7<br>557,7<br>557,7<br>557,7<br>557,7<br>557,7<br>557,7<br>557,7<br>557,7<br>557,7<br>557,7<br>557,7<br>557,7<br>557,7<br>557,7<br>557,7<br>557,7<br>557,7<br>557,7<br>557,7<br>557,7<br>557,7<br>557,7<br>557,7<br>557,7<br>557,7<br>557,7<br>557,7<br>557,7<br>557,7<br>557,7<br>557,7<br>557,7<br>557,7<br>557,7<br>557,7<br>557,7<br>557,7<br>557,7<br>557,7<br>557,7<br>557,7<br>557,7<br>557,7<br>557,7<br>557,7<br>557,7<br>557,7<br>557,7<br>557,7<br>557,7<br>557,7<br>557,7<br>557,9<br>557,7<br>557,7<br>557,7<br>557,9<br>557,7<br>557,0<br>557,7<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,0<br>557,00                                              |
| ) |        |   |              | 367  | ŕM, °C                       | 29,1<br>37,0<br>45,0<br>67,1<br>78,1<br>78,1<br>78,1<br>88,1<br>112,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|   |        | ~ |              | 0.6  | ta, °C                       | 30,0<br>36,6<br>53,2<br>68,5<br>79,5<br>79,5<br>111,0<br>111,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| × |        |   |              | 1,0  | <sup>t</sup> M <sup>*C</sup> | 19,0<br>20,5<br>31,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>9<br>861,9<br>9<br>861,9<br>9<br>861,9<br>9<br>861,9<br>9<br>861,9<br>9<br>861,9<br>9<br>861,9<br>9<br>861,9<br>9<br>861,9<br>9<br>861,9<br>9<br>861,9<br>9<br>861,9<br>9<br>861,9<br>9<br>861,9<br>9<br>861,9<br>9<br>861,9<br>9<br>861,9<br>9<br>861,9<br>9<br>861,9<br>9<br>861,9<br>9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861,9<br>861 |
| ) |        |   |              |      | ťa,°C                        | 222,6<br>255,1<br>36,9<br>7,7<br>87,7<br>87,7<br>87,7<br>87,7<br>86,9<br>87,7<br>86,9<br>87,7<br>87,7<br>86,9<br>87,7<br>87,7<br>87,7<br>87,7<br>87,7<br>87,7<br>87,8<br>87,9<br>87,7<br>87,7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|   | F02    |   |              |      |                              | $\begin{array}{c} 0,0348\\ 0,0372\\ 0,0875\\ 0,175\\ 0,175\\ 0,291\\ 0,291\\ 0,582\\ 0,582\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

TABLE 3. Comparison of the Temperature Variation at the Point  $x/\delta_1 = 1.0$  of a Two-Layered Plate in Regime 1 According to the

| Approximat                           | e Num( | erical 1 | Method | and An | alog Cc | ompute. | r Mode | ling  | r      |       |       |        |       |       |       |       |       |       |
|--------------------------------------|--------|----------|--------|--------|---------|---------|--------|-------|--------|-------|-------|--------|-------|-------|-------|-------|-------|-------|
| τ, h                                 | 0,31   | 0,52     | 0,78   | 0,99   | 1,04    | 1,3     | 1,56   | 1,98  | 2,08   | 2,60  | 2,97  | 3,12   | 3,64  | 3,95  | 4,16  | 4,68  | 4,94  | 5,20  |
| $\Delta \tau$ , h                    | 0,31   | 0,21     | 0,26   | 0,21   | 0,05    | 0,26    | 0, 26  | 0, 42 | 0,1    | 0, 52 | 0,37  | 0,15   | 0,52  | 0,31  | 0,21  | 0,52  | 0,26  | 0, 26 |
| $(t_{c_{t}}-t_{0}), \circ C$         | 46     | 51       | 56     | 64     | 12      | 71      | 71     | 62    | 79     | 84    | 68    | 92     | 92    | 92    | 92    | 96    | 96    | 26    |
| $t_{c_i} - t_0$<br>$t_{c_i} - t_0$   | I      | 0,902    | 0,912  | 0,876  | 0,902   | 1,0     | 1,0    | 0'0   | 1,0    | 0,942 | 0,945 | 0,967  | 1,0   | 1,0   | 1,0   | 0,96  | 1,0   | 66'0  |
| $\operatorname{Bi}_m$                | 0,1    | 0,11     | 0,12   | 0,13   | 0,15    | 0,15    | 0,17   | 0,18  | 0,19   | 0,215 | 0,25  | 0,27   | 0,31  | 0,36  | 0,39  | 0,44  | 0,48  | 0,53  |
| $\overline{\Theta}_{i_0}$            | 0      | 0,054    | 0,082  | 0,103  | 0,117   | 0,127   | 0,162  | 0,187 | 0,255  | 0,249 | 0,320 | 0,369  | 0,395 | 0,486 | 0,540 | 0,548 | 0,630 | 0,670 |
| $\overline{\Theta}_{i_{\mathbf{e}}}$ | 0,06   | 0,09     | 0,113  | 0,130  | 0,127   | 0,162   | 0,208  | 0,255 | 0, 265 | 0,339 | 0,382 | 0, 395 | 0,486 | 0,540 | 0,572 | 0,630 | 0,675 | 0,715 |
| t <sub>a</sub> , °C                  | 18,8   | 20,6     | 22,6   | 24,3   | 25,1    | 27,5    | 30,7   | 36,1  | 36,9   | 44,5  | 50,0  | 52,4   | 60,6  | 65,6  | 68,7  | 76,5  | 80,7  | 85,2  |
| U_M                                  | 0,03   | 0,045    | 0,063  |        | 0,089   |         | 0,150  |       | 0, 213 | 0,289 |       |        | 0,452 |       |       |       |       | 0,700 |
| <i>t</i> <sub>M</sub> , °C           | 19,0   | 20,5     | 22,3   |        | 24,9    |         | 31,0   |       | 37,3   | 44,9  |       |        | 61, 2 | -     |       |       |       | 86,0  |

We recall that, as shown in [8], the temperature variation at any point of a body under variable boundary conditions can be obtained as the sum of the solutions (subscript f = "fixed")

$$\overline{\Theta}(\operatorname{Bi}, \operatorname{Fo}_{2})|_{0}^{\operatorname{Fo}_{2}(n\Delta\tau)} = \overline{\Theta}(\operatorname{Bi}_{1}, \operatorname{Fo}_{2}) + \overline{\Theta}(\operatorname{Bi}_{2}, \operatorname{Fo}_{2}) \\ \xrightarrow{+\overline{\Theta}(\operatorname{Fo}_{2}<\operatorname{Fo}_{2}<\operatorname{Fo}_{2}(\Delta\tau))} + \cdots + \overline{\Theta}(\operatorname{Bi}_{n}, \operatorname{Fo}_{2}) \\ \xrightarrow{+\overline{\Theta}(\tau_{2}f)<\operatorname{Fo}_{2}<\operatorname{Fo}_{2}(\tau_{2}f+\Delta\tau)} \cdots + \overline{\Theta}(\operatorname{Bi}_{n}, \operatorname{Fo}_{2}) \\ \xrightarrow{+\overline{\Theta}(\tau_{n-1})_{f}<\operatorname{Fo}_{2}<\operatorname{Fo}_{2}(\tau_{n-1})_{f}+\Delta\tau)},$$
(3)

if the functions  $Bi = f(\tau)$  and  $t_c = \varphi(\tau)$  are replaced by piecewise step functions and the lower limits of Fo<sub>2</sub> in each interval of constant  $Bi_m$  are determined from the conditions guaranteeing continuous differentiability of the solution.

A detailed sample calculation of the temperature variation at the point  $x/\delta_1 = 1.0$  in regime 1 of Table 1 is presented in Table 3.

The replacement of the continuous functions  $Bi = f(\tau)$  and  $[t_c(\tau) - t_0]$  by piecewise step functions for unequal intervals of constant  $Bi_m$  and  $(t_c - t_0)$  makes it possible in certain zones to obtain a more complete picture of how the variations of Bi and  $t_c$  are taken into account in the solution of the problem.

From the quantity  $\overline{\Theta}_{i_{e}}$  at the end of each conditional interval of constant  $\operatorname{Bi}_{m}$  and  $(t_{c_{i}} - t_{0})$  we determine the value of the temperature at the analytic point at given times (see Table 2) as

$$t_{\mathbf{a}} = \overline{\Theta}_{\mathbf{i}_{\mathbf{c}}}(t_{\mathbf{c}_i} - t_0) + t_0 \; .$$

Simultaneously we find the temperature values obtained at the analytic points by modeling of the problem on an analog computer according to the relation

$$t_{\rm M} = U_{\rm M}(t_{\rm c}^{\rm max} - t_{\rm 0}) + t_{\rm 0}$$

An analysis of the results given in Tables 2 and 3 permits us to state that the method described in [8] for the approximate numerical solution of the problem of the nonstationary temperature field under timevarying boundary conditions is also applicable to the calculation of the temperature field of a system of bodies when solutions have been found for the problem under constant boundary conditions.

## NOTATION

| $a_{\mathbf{i}} = \lambda_{\mathbf{i}} / c_{\mathbf{i}} \gamma_{\mathbf{i}},$ |                                                                                                          |
|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| $a_2 = \lambda_2 / c_2 \gamma_2$                                              | are the thermal diffusivities of the high- and low-thermal-conductivity layers;                          |
| $\mathbf{h_1}(\tau) = \alpha_1(\tau) / \lambda_1,$                            |                                                                                                          |
| $\mathbf{h}_{2}(\tau) = \alpha_{2}(\tau) / \lambda_{2}$                       | are the heat-transfer coefficients at the boundaries of the high- and low-conductivity                   |
|                                                                               | layers;                                                                                                  |
| $t_{C_1}(\tau), t_{C_2}(\tau)$                                                | are the temperature of medium at the side of highly heat-conducting and less heat-<br>conducting layers; |
| $\rho = \mathbf{c}_2 \gamma_2 \delta_2 / \mathbf{c}_1 \gamma_1 \delta_1;$     |                                                                                                          |
| $\xi = \lambda_2 \delta_1 / \lambda_1 \delta_2;$                              |                                                                                                          |
| $\Delta \tau$                                                                 | is the interval of constancy of $Bi_m$ and $t_{c_i}$ ;                                                   |
| $Fo_2 = a_2 \tau / \delta_2^2$                                                | is the Fourier criterion;                                                                                |
| $Bi = h_1 \delta_1$                                                           | is the Biot criterion;                                                                                   |
| UM                                                                            | is the potential measured at an analytic point of the model at certain times;                            |
| tmax                                                                          | is the maximum temperature of the medium in the investigated problem;                                    |
| t <sub>0</sub>                                                                | is the initial temperature of the body.                                                                  |

## LITERATURE CITED

- 1. E. Mayer, "Heat flow in composite slabs," ARS Journal (May-June, 1952).
- 2. R. S. Harris, Jr. and J. R. Davidson, NASA Tech. Note TN-D-519 (January, 1961).
- 3. J. J. Brogan and P. J. Schneider, "Heat conduction in series composite wall," Trans. ASME, Ser. C, 83, No. 4 (1961).
- 4. V. I. Figurovskii, Izv. VUZ, Aviatsionnaya Tekhnika, No. 2 (1960).
- 5. M. D. Mikhailov, Zh. Prikl. Mekh. i Tekh. Fiz., No. 6 (1963).
- 6. A. A. Kobylyanskii, Izv. VUZ, Aviatsionnaya Tekhnika, No. 1 (1964).
- 7. G. I. Pavlovskii, in: Power Machinery Construction [in Russian], No. 1, Khar'kov Univ. (1966).
- 8. O. T. Il'chenko and L. I. Shifan, Inzh.-Fiz. Zh., 17, No. 4 (1969).

. .